Cyber security risks:
Comprehensive mitigation through technical, contractual and financial mitigation mechanisms

PROFESSOR GEORGE SPANOUDAKIS
CITY, UNIVERSITY OF LONDON
KEYNOTE PRESENTATION, FedCSIS 2019

Outline

- Cyber threats: the current picture
- Cyber risks: multiple level assessment & management
- Cyber risks: key challenges
- An integrated cyber security assurance approach
- Capabilities of integrated cyber security assurance
- The models
 - Model based assessments
 - Intelligence sharing
 - Penetration testing
 - Monitoring
 - Hybrid assessments
 - Risk assessment
- Cyber range
- Cyber security SLAs
- Cyber insurance

© G. SPANOUDAKIS, FedCSIS 2019
Cyber risks: the current picture

- Mail and phishing attacks have become a primary threat (rapid increase of using HTTPs sites for phishing)
- Crypto miners have become an important monetization vector for cyber-criminals.
- State-sponsored threat agents
- Emergence of IoT environments vulnerability due to missing protection mechanisms in low-end IoT devices and services
- Fileless attacks (77% of attacks)
- Malware targeting critical infrastructures (e.g., Triton that targets safety instrumented industrial systems and processes)
- Growth of open source malware (e.g., Mimikatz, Powerspoilt) as it is harder to attribute malware and has reduced development cost

Cyber risks: Multiple level assessment & management

<table>
<thead>
<tr>
<th>STRATEGIC</th>
<th>TACTICAL (medium term)</th>
<th>TACTICAL (short term)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ strategic commitments + evolution</td>
<td>+ adaptation</td>
<td>threat intelligence, risk assessments for security categorization; security control selection, implementation, and assessment; information system and common control authorization; and security control monitoring</td>
</tr>
<tr>
<td>+ strategic commitments + evolution</td>
<td>+ adaptation</td>
<td>assessment of risk in connection with mission/business processes, enterprise architecture, or the funding of information security programs.</td>
</tr>
<tr>
<td>+ strategic commitments + evolution</td>
<td>+ adaptation</td>
<td>assessment of systemic information security-related risks associated with organizational governance and management activities</td>
</tr>
</tbody>
</table>

LEVEL / TIER

SYSTEM LEVEL
BUSINESS PROCESS LEVEL/MISSION
ORGANISATIONAL
Key challenges

- Effective and comprehensive threat information exchange
- Enhanced analytics & automation for establishing the S&P posture of an organization and/or supply supply chains
- “Out-of-the-box thinking” and support S&P risk management

Key challenges: Effective & Comprehensive Threat info exchange

- Fragmented taxonomies, no common vocabulary
 - Threat, vulnerabilities, weaknesses etc.
- Lack of contextual information
- Lack of threat triage (aka prioritization)
 - No prioritization, unclear basis of prioritization where it exists
- Unstructured information
 - Mostly free text
 - Very basic identification
- Trustworthiness
 - Trustworthiness of info, providers, threat platform operator
 - Lack of comprehensive threat info handling protocols & configurable access control mechanisms
- Diverse data formats and APIs
 - E.g., STIX 1.x, OpenIOC and MISP JSON

© G. SPANOUDAKIS, FedCSIS 2019
Key challenges: Enhanced analytics and automation

- Automated assessments
 - For all levels of risk management (system, business processes & mission, organizational)
 - For all horizons of risk management (tactical short term, tactical medium term & strategic)
- Need for complementary assessments (e.g., vulnerability assessment, penetration testing, monitoring, consideration of existing certificates)
- Need for hybrid assessments, combining outcomes of individual assessments
 - Complementary outcomes
 - Conflicting outcomes
- Need for incremental assessments
- Automated adaptation and evolution of assessment schemes

Key challenges: Enhanced analytics and automation (cont’d)

- Difficult to generate executable assessments from higher level specifications
 - Difficult to propagate lower level system risk assessment to higher level organizational and business risk assessment
- Automated adaptation of
 - Security assurance models
 - Security assessments
- 0-day attacks
Key challenges: “Out-of-the-box thinking” for risk treatment

- “Out-of-the-box thinking” for S&P risk controls
 - Traditional security controls
 - Risk treatment mechanisms for systems crossing organizational boundaries in service supply chains
 - Establishment, monitoring and management of Cyber Security Service Level Agreements (CSLAs)
 - Establishment, monitoring and management of Cyber Insurance Policies (CIPs)
 - (intra and inter organizational) cyber security training
- Effective decision support for risk treatment, through a mixture of
 - Development/deployment of own security mechanisms
 - Cyber range training
 - Coverage through CSLAs, CIPs?
- Comprehensive modelling for (cyber) security assurance is essential

Key challenges: “Out-of-the-box thinking” for treatment

- Risk Avoidance
- Risk Mitigation
- Risk Transfer (sharing)
Key challenges: “Out-of-the-box thinking” for treatment

An integrated cyber security assurance approach

- Security and privacy assurance centric
 - To enable continuous and comprehensive assessment in line with regulatory requirements
- Model driven
 - Based on comprehensive S&P assurance models
 - To provide a common (and uniform) basis for all sorts of reasoning required
 - To provide extensibility
An integrated cyber security assurance approach

Present practice

Future

Capabilities for Integrated Cyber Security Assurance
Capabilities for Integrated Cyber Security Assurance

- CSLA Management
- Cyber Range & Training
- Risk Treatment (Decision Making)
- Risk Assessment (technical & economic)
- System Assessment
- Threat Intelligence
- Static Analysis
- Training Models & Programmes
- Cyber Range Models
- Impact/Value Models
- S&P Assessment Models
- System Models
- Evidence

The Models

© G. Spanoudakis, FedCSIS 2019
The Models: overview

- System models
- Assessment models
 - S&P Assessment models
 - Impact models
 - Risk models
 - Value models
- Cyber range & training models

The Models: Assets
Intelligence Sharing

Vulnerability/Threat Scanning

- Get vulnerabilities from NIST database
- Create common platform enumeration descriptors (CPEs) for Software and Hardware assets
- For each CPE find the vulnerabilities that can apply
- Store for each asset the common vulnerabilities and exposures (CVEs) that are applicable
- In-depth, more sophisticated search for vulnerabilities (based on asset relations such as control and containment relations)
Intelligence Sharing: Vulnerability/Threat Scanning

Example

Intelligence Sharing: key challenges

- Open standard interfaces
- Privacy preserving sharing
- Intelligent sharing (what is important to send) – ML and Decision making
- Contextualization
Penetration Testing

Penetration Testing: overview

- Executing pre-encoded tests for known vulnerability and threats
- Automated generation of system model elements: assets, properties, threats, vulnerabilities and assessments
- Currently supported tools
 - OpenVAS:
 - vulnerabilities scanner (some are related to CVE/CVSS 2.0; some not)
 - covers platform and application layer software components, exposed to the net
 - Nessus:
 - vulnerabilities scanner (all alerts are related to some threat, only some are related to CVE/CVSS v3.0)
 - covers platform and application layer software components, exposed to the net
 - Zap:
 - web apps scanner;
 - deeper checks (all active directories accessible), missing tags from HTTP requests, exposed cookies, unencrypted login pages
 - Nmap:
 - open gates, web apps listening to each port (SSH), software
Penetration Testing: model driven

Penetration Testing: Conflicting results

OpenVas vs Nessus

Red: Conflicting assessments for common elements
Green: Similar assessments for common elements
Blue: Unique assessment result elements

© G. SPANOUDAKIS, FedCSIS 2019
Penetration Testing: Open Issues

- Conflicting outcomes → hybrid assessment models
- More sophisticated processing
- Standards (especially for threats)
- Better context information

Monitoring
Monitoring: overview

- Depending on what needs to be assessed, monitoring should cover
 - The network
 - The computational infrastructure
 - The OS and any middleware layer
 - The application layer
 - Any devices connected to the system
- What may be monitored
 - Indicators of attacks (threats)
 - Indicators of system compromise (IOCs)
 - Indicators of correctness of operation of security controls
 - Performance of cyber range programmes as a whole and of trainees taking them

Monitoring: example

Non repudiation through Trusted Third Party (TTP)

- Monitor whether the cloud provider implements correctly
 - The upload phase
 - The download phase
 - The recovery phase
- Implements correctly?
 - Produces an NRR to the relevant party (A, B or TTP) within the required time period
- Establish sufficiency conditions for assessment
- Check for anomalies. see [4]
Monitoring: example (cont’d)

Monitoring formulae for upload phase (in abstract syntax of Event Calculus)

Monitoring Rule:

Happens(e(_id1, _A, _C, REQ, RQS_{AC}, _C), _t_{req}, [_t_{req}, _t_{req}]) \Rightarrow
Happens(e(_id2, _C, _A, RES, RSP_{CA}, _C), _t_{g2}, [_t_{req}+f(_t_{req}), _t_{req}])

where:

\[
RQS_{AC} = \text{rqs}(f_{\text{RequestAC}}, _L, _A, _C, \text{TTP}, _M, \text{H}(M), _B\text{List}, \text{H}(B\text{List}), _Seq_{1}, _T_{g1}, _T_{1}, _E\text{G}_{0}(K, L, S_{A}(H(M))), _E\text{c}_{0}(S_{A}(H(M)), \text{H}(B\text{List})),
\text{E}\text{G}_{0}(K, _L, \text{H}(M)), \text{H}(\text{L}_{1}, _\text{Seq}_{1}, _\text{T}_{g1}, _\text{T}_{1}))
\]

\[
RSP_{CA} = \text{rsp}(f_{\text{ResponseCA}}, _L, _A, _C, \text{TTP}, _H(M), _B\text{List}, _Seq_{2}, _T_{g2},
T{S}, _E\text{c}_{1}(S_{C}(H(M))), S_{C}(L, Seq_{2}, Tg2, T_{S}, _E\text{G}_{0}(S_{A}(H(M))), H(B\text{List})),
\text{E}\text{G}_{0}(K_{2}, _L, S_{A}(H(M)), \text{H}(\text{L}_{2}, _\text{Seq}_{2}, _\text{T}_{g2}, _\text{T}_{1})))
\]

+ analogous monitoring rules for download and recovery phases

Hybrid assessment
Hybrid assessment: overview

- Combination of different types of assessments / evidence as, for example:
 - Monitoring
 - Testing
 - Penetration testing
 - Existing certificates

- Why?
 - Comprehensiveness
 - What if monitoring has not covered all possible computation paths?
 - Gaps in time
 - How can be sure of the completeness of scripts implementing penetration testing in existing tools (especially as threats and vulnerabilities evolve)
 - Identification and resolution of conflicts
 - Recall the conflicting assessments of OpenVas and Nessus

Hybrid assessment: example 1

Non repudiation through Trusted Third Party (TTP)

- In the TTP non-repudiation protocol
 - There might not have been even logs covering TTP
 - Would you create a “sufficiently confident” assessment by simply relying on monitoring without testing?

Hybrid assessments:
- Test TTP; combine evidence
- Rely on a certificate for TTP or the outcome static analysis
Hybrid assessment: example 2

Security Property: cloud service availability
Probability of service producing a non faulty response within a given time period exceeds a given threshold

Why hybrid?
- To check if real service operation calls “around” the executed tests produced also an acceptable outcome (i.e., a non faulty response within the required time period) [local correlation 1]
- To check if for monitoring results that satisfy the conditions “marginally”, the available testing evidence (calls executed by testing) also satisfy the conditions [local correlation 2]
- To check if over the assessment period testing and monitoring evidence support consistently the same conclusion [global correlation]

Hybrid assessment: capabilities

- Correlate outputs of existing assessments
 - Through the definition of assessment criteria in hybrid assessment models

- Invoke testing tools through monitoring engine

 Security Property: data integrity at rest
data modifications require authorisation

 Monitoring Rule:
 \[
 \text{Happens}(e(_e1, _sc, _TOC, \text{REQ}_\text{updOp}(_\text{cred, } _\text{data, } _\text{auth}), _\text{TOC}), t1, [t1,t1]) \land \\
 \text{Happens}(e(_e2, _TOC, _AI, \text{RES}_\text{updOp}(_\text{cred, } _\text{data, } _\text{vCode1}), _\text{TOC}), t2, [t1,t2+d2]) \land \\
 (_\text{vCode1} \neq \text{Nil}) \Rightarrow \\
 \text{Happens}(e(_e3, _CA, _AI, \text{EXC}_\text{authorO}(_\text{cred, } _\text{auth, } _\text{vCode2}), _\text{TOC}), t3, [t2,t2+d2]) \land (_\text{vCode2} \neq \text{Nil})
 \]

 Monitoring log indicates a granted data update request

 Test: execute the authorisation operation to check if appropriate authorisation rights were in place
Risk assessment

Risk assessment: overview

- Likelihood of violation of required S&P properties
- Impact of violations
 - Direct and indirect
 - Technical vs. economic
Risk assessment: likelihood of property violations

- Different likelihood models
 - Classic probability
 - DS beliefs
 - Fuzzy likelihoods
 - Other qualitative likelihoods
- Explicit definition of likelihood model
- Assessments may depend on other assessments, e.g.,
 - \(\text{CompSA} \text{ dependsOn} (\text{or}) (\text{SA}_1, ..., \text{SA}_n) \rightarrow \text{CSA} = \text{SA}_1 \text{ or } ... \text{ or } \text{SA}_n \)
 - \(\text{CompSA} \text{ dependsOn} (\text{and}) (\text{SA}_1, ..., \text{SA}_n) \rightarrow \text{CSA} = \text{SA}_1 \text{ and } ... \text{ and } \text{SA}_n \)
- Dependencies may only exist between different assessments of the same asset and property

Risk assessment: technical impact assessment

- Technical impact
 - Is generated by a technical impact model, defined as a set of impact identification criteria
 - Generates a technical impact assessment that is evaluated according to the model and includes a set of affected assets
Risk assessment: technical impact assessment

- Technical impact

 - Is generated by a technical impact model, defined as a set of impact identification criteria
 - Generates a technical impact assessment that is evaluated according to the model and includes a set of affected assets

Example 1: Identify the assets of a system, whose confidentiality has been directly compromised by a confidentiality breach, as assessed by a security assessment model X or are contained in the containment closure of assets compromised in this way.

- Impact criterion:
 - Language: OCL
 - Specification:

```ocl
def DC = self.appliedOn.includes->select(A | A.assessedThrough->exists(SA | (SA.isBasedOn.name = "X") and (SA.assessedProperty.category = PropertyCategoryType::Confidentiality)))
self.model.assessment = DC->closure(X: Asset | X.contains))```

© G. SPANOUDAKIS, FedCSIS 2019
Risk assessment: technical impact assessment (examples)

- **Example 2:** Identify all data assets of a system, which are controlled by an asset that has an authentication vulnerability.

- **Impact criterion:**
  - Language: OCL
  - Specification:

    ```
 Def A_AUTHV = self.appliedOn.includes->select(a | a.hasVulnerability->exists(V | (V.leadToViolation->exists(P | (P.category = PropertyCategoryType::authentication))))
 Def ALL_A_AUTHV = self.model.assessment = A_AUTHV.controls->closure(X: Data | X.contains))
    ```

Risk assessment: economic impact assessment

- An economic impact assessment
  - is always based on a technical impact assessment (i.e., a set of affected assets as defined by a technical impact assessment model)
  - is generated by an economic impact model, defined as a set of economic impact calculation criteria
  - includes
    - an evaluation of the cost of affected assets, and possibly
    - the total value of the business processes which involve the affected assets
    - the costs of any legal procedures that may be needed due to the compromised assets
Risk assessment: economic impact assessment

An economic impact assessment

- is always based on a technical impact assessment (i.e., a set of affected assets as defined by a technical impact assessment model)
- is generated by an economic impact model, defined as a set of economic impact calculation criteria

Includes

- an evaluation of the cost of affected assets, and possibly
- the total value of the business processes which involve the affected assets
- the costs of any legal procedures that may be needed due to the compromised assets

Risk assessment: economic impact assessment (examples)

Example 1:

- Identify all data assets of a system, which are controlled by an asset that has an authentication vulnerability (as in 2nd example of technical assessment).
  
  See ALL_A_AUTHV

- Find the business processes that may be affected due to using these data.
  
  Def BP = self.isInvolvedIn

- Evaluate the total value of these processes
  
  DP.value.value->sum()
Risk assessment: economic impact assessment (examples)

Example 1:
- Identify all data assets of a system, which are controlled by an asset that has an authentication vulnerability (as in 2nd example of technical assessment).
  
  See ALL_A_AUTHV

- Find the business processes that may be affected due to using these data.
  
  Def BP = self.isInvolvedIn

- Evaluate the total value of these processes
  
  DP.value.value->sum()

Risk assessment: Open Issues

- Definition of appropriate assessment criteria
  
  For example
  
  - Identified threats → monitoring rules for assessment
  - Detected vulnerabilities → penetration tests

- Validation of criteria
  
  - Correctness of monitoring rules

- Intra, intra and extra system coverage is needed
  
  For example
  
  - ensure than no screenshot is taken when a system containing privacy sensitive data is in use
  - no access is allowed to a directory holding sensitive system data by a process other than the processes of the system itself

- Meaningful baseline economic models are difficult to define
Cyber Range

- Overview
- Overall process
- Cyber range model – basics

Cyber Range: overview

- Integrated with a security assurance and risk treatment programme
- Model driven
- Seen as an alternative/complementary risk treatment mechanism which should be selected based on
  - Effectiveness
  - Cost
Cyber Range: overall process

### Cyber Range: Capabilities

- **ASSURANCE MODELS**
  - Training Programmes
  - Training Models
  - Cyber Range Models
  - Impact/Value Models
  - S&P Assessment Models
  - System Models (+ Simul/Emul)
  - EVIDENCE

- **Training**
  - Adaptation
  - Visualiser
  - Trainee & Programme Performance Evaluator

- **Cyber Range**
  - Training Programme Generator
  - System/Component Simulator
  - Component Emulator
  - Risk Assessment
  - Monitoring

- **Model Editor**

- **Threat Intelligence**
Cyber Range:
Mixture of simulated/emulated assets

Cyber Range:
programme selection and customisation

- Selection
  - Threat (particular scenarios under which an attack may manifest itself)
  - Asset
  - Security controls
  - Stakeholders (e.g., end user, administrator, CISO etc)

- Configuration
  - Simulated and emulated components
  - Simulation and emulation model parameters
  - Stakeholders
  - Level of difficulty

- Based on
  - Estimated risk (penetration testing, monitoring etc)
  - Existing coverage and past performance
Cyber Range:
evidenced based programme adaptation

- Evidence
  - trainee performance monitoring
  - Individual trainee
  - groups of trainees (use of ML techniques such as clustering)
  - continuous security status assessments (including effect of training programme on security posture)

- Adaptation types
  - Increase threat/attack rates
  - Decrease allowed response time
  - Eliminate/add/modify security controls
  - Add/remove simultaneous attacks
  - Change mixture of simulated and emulated components

- Level
  - Trainee
  - Programme

Cyber security SLAs

- Precise Cyber security SLA (CSLA) specification
- Monitoring
- Validation/risk assessment
CSLAs specification: Service Level Objectives

- Precise SLOs are specified as tuples of
  
  \(<\text{Computational Asset, Property Category, Monitoring Rule(s)/Template, GuardedActions}>\)

- Computational assets
  - Services/Operations (interface level) or internal
  - Data (interface level or stored)

- Property categories
  - Standardised property lists (e.g., CSA catalogue) + monitoring templates (if applicable)

- Monitoring Rule(s) / Template
  - Expressed in EC Assertion [4], an Event Calculus[18] based monitoring language

CSLA Specification: SLO Example

\(<\text{CAELC(HouseData), Availability, EC-Availability(CAELC(HouseData)), 3, 0.01}\>
[TotalMonthlyViolations >10], Penalty1>
CSLA Specification: Actions

Two predefined action types:

- **renegotiate** $Pred$, which causes the SLA to be renegotiated when the guard $Pred$ is satisfied
- **penalty** $Pred\ Int$, which causes a penalty (or reward if negative) to be incurred.

### CSLA Specification: Actions Example

<table>
<thead>
<tr>
<th>Assets</th>
<th>Security Properties / GTs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Confidentiality</td>
</tr>
<tr>
<td>Data Asset</td>
<td>[v=3] NOTIFY &amp; NOTIFY</td>
</tr>
<tr>
<td>$A_1$</td>
<td>[v=1] PENALTY(10) &amp; NOTIFY $\lambda = 0.6$</td>
</tr>
</tbody>
</table>

- Two actions
- Number of violations
- Actions
- Violation Rate
- Penalty amount

© G. SPANOUDAKIS, FedCSIS 2019
CSLA Specification: Actions Example (cont’d)

<table>
<thead>
<tr>
<th>Assets</th>
<th>Security Properties / GTs</th>
<th>Confidentiality</th>
<th>Integrity</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Assets</td>
<td>[v=3] NOTIFY [v&gt;=3] RENEG ( \lambda = 0.6 )</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A2</td>
<td>PENALTY(10) &amp; NOTIFY ( \lambda = 0.15 )</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Operation Assets</td>
<td>[v=3] NOTIFY [v&gt;=3] RENEG ( \lambda = 0.6 )</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Change of violation rate

CSLA Validation: Translation to Prism for model checking

- PRISM – formal modelling and analysis of systems that exhibit random or probabilistic behaviour [14, 16]
- PRISM supports the specification and analysis of different types of probabilistic models, i.e.:
  - discrete-time Markov chains (DTMCs)
  - continuous-time Markov chains (CTMCs)
  - Markov decision processes (MDPs)
  - probabilistic automata (PAs)
  - probabilistic timed automata (PTAs)
- PRISM models are expressed in a simple state based language
  ```plaintext
 [Name] Guard -> Rate/Prob: Assignments;
  ```
- The properties to be validated for a system are expressed in a temporal logic language supporting expressions in different temporal logics (PCTL, CSL, LTL and PCTL*)
CSLA Validation:
Translation to Prism for model checking

- PRISM – formal modelling and analysis of systems that exhibit random or probabilistic behaviour [14, 16]
- PRISM supports the specification and analysis of different types of probabilistic models, i.e.:
  - discrete-time Markov chains (DTMCs)
  - continuous-time Markov chains (CTMCs)
  - Markov decision processes (MDPs)
  - probabilistic automata (PAs)
  - probabilistic timed automata (PTAs)
- PRISM models are expressed in a simple state based language
  
  \[\text{[Name]} \text{ Guard } \rightarrow \text{ Rate: Assignments;}\]
- The properties to be validated for a system are expressed in a temporal logic language supporting expressions in different temporal logics (PCTL, CSL, LTL and PCTL*)

CSLA validation: Translation to Prism

- Basic PRISM model
  - CSLA Manager environment
  - CSLA Manager

CSLA MANAGER ENVIRONMENT
- a Prism module for each SLA GT firing a violation at a given rate

CSLA MANAGER
- one transition per GT, enabled when the SLA is active and disabled when renegotiation occurs
- the rate of GT transitions is always 1 (⇒ only the env. transition rate affects time)
- each GT transition has one or more guarded SLA management actions & actions updating counters
- guard formulas for the actions
CSLA Validation: CSLA Manager module

- The SLA Manager module has one transition per GT, which is enabled when the SLA is active and becomes disabled when renegotiation occurs.

- All transitions are responsible for incrementing the value of the different counters to capture the fact that a particular GTi has been violated. This allows us to produce GT-specific versions of the different guards and variable updates in the model.

Execution of CSLA management actions: Runtime CSLA Manager

- Receives Monitoring Results from the Monitoring component

- Based on the results it process the actions of each Guarantee Term, stated in the CSLA, i.e.:
  - Executes the Notifications to the relevant parties;
  - Calculates the Penalty amounts to be paid;
  - Executes the Renegotiation action; etc.
CSLA Experimental Evaluation: Validation Results

Based on case studies of CSLAs:

<table>
<thead>
<tr>
<th>Assets</th>
<th>Security Properties / CTs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Confidentiality</td>
</tr>
<tr>
<td>A1</td>
<td>-</td>
</tr>
<tr>
<td>A2</td>
<td>[v=1] PENALTY(10) &amp; NOTIFY (\lambda = 0.15)</td>
</tr>
<tr>
<td>A3</td>
<td>-</td>
</tr>
<tr>
<td>A4</td>
<td>-</td>
</tr>
</tbody>
</table>

What is the probability that a renegotiation will occur within the first 4 days?

\[ P = \text{?} \ [F<=4 \text{day}] \text{SLAactive} \]

What is the probability to pay more than \(X_m\) currency units in the first month?

\[ P = \text{?} \ [F<=\text{month} \ (\text{penalty_amount_ConfA2}>X_m)] \]
CSLA Experimental Evaluation: Validation Results (cont’d)

What is the probability to have a violation on confidentiality or integrity of any data asset within a month?

\[ P = \Pr[F \leq \text{month} (\text{vltns}_{\text{IntA1}} + \text{vltns}_{\text{ConfA2}} \geq 1)] \]

What is the probability to reach double the infrastructure resources (i.e., to have \(2k\) number of modifications for the operation assets) within the first month?

\[ P = \Pr[F \leq \text{month} (\text{cntr}_{\text{notify}}_{\text{AvailA3}} > (2^k))] \]

(For \(k = 1\))

Cyber insurance

- Key activities
- Existing techniques
- Key activities coverage
- Models
- Management process
- Capabilities
- Challenges
Cyber Insurance: key activities

Risk Identification
- Asset Identification.
- Threat Identification.
- Security/Vulnerability Identification.

Risk Analysis
- Likelihood Determination.
- Impact Determination.
- Risk Estimation.

Policy Management
- Coverage Specification.
- Premium Estimation.
- Write and Sign Contract.
- Claim Handling.

Cyber Insurance: existing techniques

<table>
<thead>
<tr>
<th>Phase</th>
<th>Step</th>
<th>Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk identification</td>
<td>Asset identification</td>
<td>Business documentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meetings/interviews</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Questionnaires/checklists/worksheets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knowledge base</td>
</tr>
<tr>
<td>Threat identification</td>
<td>Business documentation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meetings/interviews</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Questionnaires/checklists/worksheets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knowledge base</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threat trees/PTA/attack trees</td>
</tr>
<tr>
<td>Security/Vulnerability identification</td>
<td>EDA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attack graphs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vulnerability scanning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Penetration testing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meetings/interviews</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Questionnaires/checklists/worksheets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Knowledge base</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delphi method</td>
<td></td>
</tr>
<tr>
<td>Risk analysis</td>
<td>Likelihood determination</td>
<td>History/log analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meetings/interviews</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Questionnaires/checklists/worksheets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knowledge base</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delphi method</td>
</tr>
<tr>
<td>Impact determination</td>
<td>Meetings/interviews</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Questionnaires/checklists/worksheets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knowledge base</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delphi method</td>
</tr>
<tr>
<td>Risk estimation</td>
<td>Risk table</td>
<td>ALE</td>
</tr>
</tbody>
</table>
Cyber Insurance: key activities coverage

Risk Identification
- Asset Identification.
- Threat Identification.
- Security/Vulnerability Identification

Risk Analysis
- Likelihood Determination.
- Impact Determination.
- Risk Estimation.

Policy Management
- Coverage Specification.
- Premium Estimation.
- Write and Sign Contract.
- Claim Handling (optional).

Cyber insurance: adaptive management

Risk Identification
- Assets, risks

Risk Analysis
- Claim analytics (risk, assets)
- Assets, risks
- operational risk evidence, Impact, predicted cost

Policy Management
- Claim analytics (forensic evidence, cost)
- Risk analysis (risk exposure, impact)
  - comprehensive assessment of risk for formulating and pricing cyber insurance policies
  - dynamic, continuous certificates based risk exposure
  - impact of risk on cyber system providers (e.g., impact on business reputation, theft of intellectual property) and the cost of eliminating it

Policy management (insurable assets, costs, premiums)
  - vulnerable assets → candidate subjects of insurance
  - risk estimates, value assets → policy pricing
  - certificates → prerequisite to policy validation
  - claim analytics (in reference to assurance evidence & prior risk estimates) → insurable assets, insurance cost & premiums
Cyber insurance: adaptive management

- Risk Identification
  - Assets, risks
  - new threats/vulnerabilities
- Risk Analysis
  - Claim analytics (risk, assets)
  - Claim analytics (forensic evidence, cost)
  - operational risk evidence, impact, predicted cost
- Policy Management
  - richer & external evidence logs
  - External management records

Cyber insurance: challenges

- Lack of experience and standards
- System evolution
- Technology evolution
- Information asymmetry
- Hard to measure rate of
  - Threat occurrence
  - Correct operation of security controls
- Interdependence of security
  - Internal
  - External (chains of systems)
- Lack of statistical data
  - Hidden data
  - Scarcity of similar systems
- Hard to estimate impact
  - Intangible
  - Unpredictable impact
- Correlated risks
  - Geographic similarity
  - Monoculture
  - Simultaneous replication of attacks
- Additional liability
- Time to claim
  - Unnoticed attacks

© G. SPANOUDAKIS, FedCSIS 2019
Cyber insurance: challenges

- Lack of experience and standards
  - System evolution
  - Technology evolution
- Information asymmetry
  - Hard to measure rate of
    - Threat occurrence
    - Correct operation of security controls
  - Interdependence of security
    - Internal
    - External (chains of systems)
- Lack of statistical data
  - Hidden data
  - Scarcity of similar systems
- Hard to estimate impact
  - Intangible
  - Unpredictable impact
- Correlated risks
  - Geographic similarity
  - Monoculture
  - Simultaneous replication of attacks
- Additional liability
  - Time to claim
    - Unnoticed attacks

On going work

- Automated assessments
  - For all levels of risk management (system, business processes & mission, organizational)
  - For all horizons of risk management (tactical short term, tactical medium term & strategic)
- Need for hybrid assessments, combining outcomes of individual assessments
  - Complementary outcomes
  - Conflicting outcomes
  - Incremental assessments
  - Automated adaptation and evolution of assessment schemes
  - Adaptive cyber range
Thank You!